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Abstract 
 
Volatility of returns has been studied extensively in the literature but volatility of volatility 
(vovo for short) has been given very little consideration. This paper takes an expository look 
at vovo and discovers some remarkable results and concepts. These include alpha generation 
and risk smoothing strategies along with tactical asset allocation insights. Most of these 
results are quite novel due to the lack of current research on vovo. 
 
The paper starts with a discussion of the mathematics of leverage. It produces a formula for 
the optimal leverage of an investment for a given market environment. It may come as a 
surprise to some that there is an optimal leverage since it may seem that if the return from an 
investment is greater than the cost of borrowing then the more leverage, the better the return. 
However, it is shown that volatility exerts a drag on the return of leveraged investments and 
the drag, being a squared function of return, eventually overwhelms any extra return that 
comes from using leverage. 
 
Leveraged Exchange Traded Funds (ETFs) are used to illustrate the principles. We show how 
ETFs can be used to implement continuously dynamic leverage. We also clear up a myth 
about long term holding of leveraged ETFs. Sample data id shown from a number of stock 
markets including data from as far back as 1885. 
 
It is difficult to predict stock market returns (and we do not attempt to do so in this paper) but 
relatively easy to predict market volatility. But volatility predictions don't easily translate into 
return predictions since the two are largely uncorrelated. We put forward a leverage 
framework that produces a formula in which compound returns become a function of 
volatility and therefore become somewhat more predictable. We show that this strategy 
produces excess returns (alpha) giving us the upside of leverage without the downside. The 
method works by using higher leverage when returns compound quickly and lower leverage 
when they don’t. Portfolio volatility is thus more efficiently budgeted out over time. 
 
This method of producing alpha does not rely on technical, fundamental, or quantitative 
analysis or backtesting. It works using the mathematics of compounding. Backtesting is used 
to illustrate the performance of the strategy. 
 
As a side effect of the strategy the volatility of volatility of the portfolio is reduced over a 
static portfolio. This further boosts returns because vovo has a cost to any portfolio. A 
portfolio manager has to consider portfolio volatility when making asset allocations for a 
given level of risk tolerance and this volatility can take extreme values that depend on the 
vovo. For any given level of risk tolerance the manager has to be more conservative the 
higher vovo is and this conservativeness costs the portfolio returns.  



This has major implications for the management of balanced funds and for financial 
planning. It seems odd that a manager may specify and stick to an asset allocation of, say 
60% equities and 40% bonds because they have determined that fulfils the client’s level of 
risk tolerance and to ignore the fact that those equities may have a volatility in some years 
triple the volatility in other years. Vovo management solves that problem. 
 
In fact, considering vovo gives rise to a new style of balanced fund – one which has a 
targeted volatility. A fund manager or ETF provider could have a family of such targeted 
funds with a range of targets, say, 5%, 10%, 15% etc. Regardless of actual market volatility 
these funds would, due to the predictability of volatility, always have a volatility close to 
their targets. 
 
This suggest a new measure of risk. Traditionally risk is measured by volatility but we 
propose a more useful measure which is volatility plus two standard deviations of volatility 
(i.e. volatility + 2 * vovo) which we call extreme volatility (EV). It is roughly the volatility 
value that is exceeded only 5% of the time. This is a better measure of risk because people’s 
risk tolerance is more closely associated with EV than with volatility. Our volatility strategy 
produces alpha regardless of which of the two measures of risk we use. 
 
A further side effect of the volatility strategy is that it appears to provide some measure of 
crash protection. We illustrate this with backtesting during the 1987 crash. We also backtest 
the strategy over specific bear, sideways, and bull markets. It is found that in a bear market 
when leverage is expected to amplify losses the strategy does no worse than the index. 
 
The dynamic leverage can be used as a timing signal for tactical asset allocation between 
risky and risk-free assets. We also show that it can be used in a non-leveraged portfolio to 
reduce volatility without reducing returns. 
 
A further source of alpha is a weak, but productive, relationship between returns and 
volatility that we model using a simple power formula. 
 
An interesting paradox is illustrated. The beta of a portfolio is usually thought to be a 
measure of the leverage of the portfolio. But our volatility strategy is shown to have a 
leverage greater than one and a beta less then one. This apparent contradiction is at the heart 
of how the strategy works. It applies leverage judiciously in circumstances where beta is not 
affected. Essentially this strategy produces excess returns by giving us the upside of leverage 
without the downside. 
 
We provide formal definitions of and the distinction between Data snooping bias, Data 
mining bias, and Data torturing bias. 
 
Finally we finish with a look at some ideas for further research. 
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Abstract

It is di¢ cult to predict stock market returns but relatively easy to predict market

volatility. But volatility predictions don�t easily translate into return predictions since

the two are largely uncorrelated. We put forward a framework that produces a formula

in which returns become a function of volatility and therefore become somewhat more

predictable. We show that this strategy produces excess returns giving us the upside of

leverage without the downside.

As a side-e¤ect the strategy also smoothes out volatility variation over time and gives

us a dynamic timing signal for tilting asset allocations between conservative and aggressive

assets.

Keywords and phrases: volatility timing, volatility of volatility, extreme volatility,

volatility drag, managed volatility, continuously dynamic leverage, leveraged exchange

traded funds, alpha generation

1 Introduction

Whether or not you believe in the e¢ cient market hypothesis it is di¢ cult to predict market

returns (Ferson, Simin, and Sarkissian 2003) whereas market volatility is clearly forecastable
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(Poon and Granger 2003). Fischer Black (Miller 1999) reasoned that estimating variances is

orders of magnitude easier than estimating expected returns. This conclusion does not violate

market e¢ ciency since accurate volatility forecasting is not in con�ict with underlying asset

and option prices being correct.

The purpose of this paper is to use the predictability of volatility to generate excess returns

(returns over and above the market when adjusted for risk). For such predictions to be useful

volatility itself must be volatile.

The remainder of this article is structured as follows. The next section presents the math-

ematics of compounding daily leveraged returns which gives rise to the formula that motivates

the investment strategies. The next two sections discuss the concept of the volatility of volatil-

ity and introduce the strategies that exploit the concept. The following section forms the

main body of the article where the econometric results are discussed. Finally, the last section

summarizes the empirical �ndings, draws some conclusions, and points out avenues for future

research.

All index data comes from Yahoo.com except for the US stock market data from 1885 to

1962 which comes from (Schwert 1990) (the capital index is used). We augment this dataset

using the S&P 500 index to produce a price series up to 2009.

2 Simpli�ed Mathematics of leverage

To introduce our key investment concept of volatility drag and to see how leverage works we

start with an example involving leveraged exchange traded funds (ETFs).

2.1 De�nition of Leveraged Exchange Traded Funds

Leveraged ETFs are funds that aim to magnify the daily moves of an index. For example in

a double-leveraged fund (a 2x fund), if the index goes up, then the fund goes up twice that

amount. The magni�cation multiple is speci�ed in the prospectus for the ETF and is a �xed

constant. Typical values are 1, 1.5, 2 and 3. Negative multiples such as -3, -2, and -1 are used

as well. For example if an ETF promises a return of 2 times the S&P 500 index then if the

S&P 500 index goes up 1.2% in one day the ETF will go up 2 x 1.2% = 2.4%.
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The salient point about this de�nition is that the return is marked to the benchmark daily,

not annually. This causes confusion for investors because the daily leverage multiple does not

translate to the same multiple when applied to annual returns of the ETFs or to compound

returns. The dynamics of leveraged ETFs are more complicated than just applying a multiple

to a return and the correct formula provides the key to our volatility strategies.

2.2 Myth about Long Term Holding of Leveraged ETFs

Leveraged ETFs confuse many investors because of the di¤erence between arithmetic and com-

pound returns and because of the e¤ects of volatility drag (explained below).

One of the common myths is:

Leveraged ETFs are not suitable for long term buy and hold

This myth is expressed in various ways. Some quotes from the internet about leveraged

ETFs:

�unsuitable for buy-and-hold investing,��leveraged ETFs are bound to deteriorate,�

�over time the compounding will kill,��leveraged ETFs verge on insanity,��levered

ETFs are toxic,� �levered ETFs [are] a horrible idea,� �. . . practically guarantees

losses,��in the long run [investors] are almost sure to lose money,��anyone holding

these funds for the long term is an uneducated lame-brain.��Leveraged ETFs are

leaky,��Warning: Leveraged and Inverse ETFs Kill Portfolios.�

There is even an article comparing these ETFs to swine �u.

The explanation popularly given for this myth is that volatility eats away at long term

returns. If this were true then non-leveraged funds would also be unsuitable for buy and hold

because they too su¤er from volatility. We need to more closely examine the e¤ect of volatility.

2.3 Volatility Drag

Daily volatility hurts the returns of leveraged ETFs (including those with leverage 1x). This is

due to the equality

(1� x)(1 + x) = 1� x2
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Figure 1: US Stock Market Returns for a Range of Leverages

Suppose the market goes down by x and then the next day it goes up by x. For example

the market goes down by 5% then up by 5%. Then the net result is that the market has gone

to (1-0.05) times (1+0.05) = 0.9975 which is a drop of 0.0025 or 0.25%.

That doesn�t seem fair. The market has gone down by 5% then up by 5% but our ETF that

has a leverage of 1x has gone down by 0.25%.

This drop always occurs because x2 is always positive and the sign in front is negative. So

whenever the market has volatility we lose money. We call this loss volatility drag.

The larger x is, the larger x2 is, so the larger the volatility drag. For a leveraged ETF the

leverage multiplies x and so multiplies the volatility drag. Even an ETF with a leverage of 1x

has volatility drag.

The myth has resulted from the belief that volatility drag will drag any leveraged ETF

down to zero given enough time. But we know that leverage of 1x (i.e. no leverage) is safe to

hold forever even though leverage 1x still has volatility drag. If 1 times leverage is safe then is

1.01 times leverage safe? Is 1.1 times safe? What�s so special about 2 times? Where are you

going to draw the line between safe and unsafe?

2.4 Sample Market Data

Figure 1 shows 135 years worth of daily US index prices going back to 16 February 1885.
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The construction of this index is described in Schwert (1990) and the index used is the capital

index (no dividends reinvested). S&P 500 data from Yahoo.com has been used to augment the

data up to 2009.

The orange circles show popular leverage rates 1, 2, 3, and, where visible, 4. It can be seen

that increasing leverage from zero to 1 increases the annualised return as would be expected.

But then, contrary to what the myth propagators say, increasing the leverage even further still

keeps increasing the returns.

There is nothing magic about the leverage value 1. There is no mathematical reason for

returns to suddenly level o¤ at that leverage. We can see that returns do drop o¤ once leverage

reaches about 2. That is the e¤ect of volatility drag.

What the myth propagators have forgotten is that there are two factors that decide leveraged

ETF returns: benchmark returns and benchmark volatility. If the benchmark has a positive

return then leveraged exposure to it is good and compensates for volatility drag. Since the

return is a multiple of leverage and the drag a multiple of the leverage squared then eventually

the drag overwhelms the extra return obtained through leverage. So there is a limit to the

amount of leverage that can be used.

The tradeo¤ between return acceleration and volatility drag and the management of the

tradeo¤ is the basis for our volatility strategies.

2.5 The Formula for the ETF Long Term Return

The formula for the long term compound annual growth rate of a leveraged ETF cannot be

written in terms of just the benchmark return and volatility. It also involves terms containing

the skewness and kurtosis of the benchmark. It is derived using a Taylor series expansion

(details available from the author). It does not assume that benchmark returns are Gaussian

or that returns are continuous as do formulae derived using Ito�s lemma.

But it turns out that for the world�s stock markets and for low levels of leverage (up to

about 3) the formula can be approximated by this formula:

R = k�� 0:5k2�2=(1 + k�) (1)
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where R is the compound daily growth rate of the ETF, k is the ETF leverage (not neces-

sarily an integer or positive), � is the mean daily return of the benchmark, and � is the daily

volatility (i.e. standard deviation) of the daily return of the benchmark.

R is the quantity you use to calculate the long term buy-and-hold return of the ETF. You

can see from the formula that if the volatility is zero then R = k� so that the return of the

ETF is k times the return of the benchmark. The 0:5k2�2=(1 + k�) term is the volatility drag.

Since k2�2 is always positive and (1+ k�) is always close to 1 then the volatility drag is always

positive.

R is a quadratic function of k with a negative coe¢ cient for the square term. That means

we will always get the parabola shape shown in Figure 1 and we will always have a maximum

for some value of k. Some algebra shows that the maximum is approximately (for small k�) at

k = �=�2 (2)

This clearly shows the return/volatility trade-o¤ that determines the optimal leverage.

This formula occurs in an appropriate form in the Kelly Criterion (Thorp 2006) andMerton�s

Portfolio Problem (Merton 1969). Its appearance here as the result of an optimisation is no

surprise.

2.6 A Look at Some Stock Markets

Let�s look at some other markets and time frames in Figure 2.

The pattern is quite clear. Over various markets over various time periods (mostly the last

two or so decades) except for the Nikkei 225 the optimal leverage is about 2.

2.7 Leveraged ETFs Fees

Unfortunately there may be a reason not to hold leveraged ETFs for the long term but it has

nothing to do with volatility drag. It is because of fees.

Most leveraged ETFs where the leverage is greater than one charge an annual fee of about

one percent. This imposes a �fee drag�on the ETF.

Also leveraged ETFs su¤er from tracking error. They do not exactly hit their target return
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Figure 2: Returns vs Leverage for a Rangle of Markets and Time Periods
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for the day every day. From studying a few leveraged ETFs it has been observed that the

tracking error is a complicated error and beyond the scope of this document. But tracking

error is small and is ignored for this article.

An annual fee of 0.95% (a typical value for recent leveraged ETFs) applied daily subtracts

0.95% from the annual return of the ETF. For the 1885 to 2009 data this fee reduces the return

of a 2x leveraged ETF to that of a 1x fee-free ETF. So all the bene�ts of leveraging have been

lost.

For other markets over shorter time frames the fees aren�t as destructive. The optimal

leverage is still about 2 and even after fees 2x ETFs outperform the benchmark over several

decades.

2.8 Leveraged ETFs Risks

Leveraged ETFs can be held long term provided the market has enough return to overcome

volatility drag. It usually does. For most markets in recent times the optimal leverage is about

2. But some markets and time frames will reward a leverage of up to 3. No markets will reward

a leverage of 4. So it would seem that using leveraged ETFs is a good idea for enhancing

returns. But this is not true for the following reasons:

� Leveraged ETFs do not generate alpha. Any leverage that multiplies return also multiplies

volatility by the same multiple. So risk-adjusted returns are not enhanced.

� Nearing the peak of the parabolas from the left we are adding leverage and thus volatility

and getting not much extra compounded return for it. And going past the peak we are

adding volatility and losing return. This is dangerous and since we do not know in future

markets where the peak is exactly we run the risk of negative alpha.

� Leveraged ETFs run the risk of ruin� losing all money invested.

So to use leveraged ETFs e¤ectively we want to invest as close to the left as possible and

to closely watch volatility to avoid straying over to the right. This is where the volatility of

volatility comes into play.
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3 Volatility and Volatility of Volatility

The optimal leverage k = �=�2 gives the optimal value of R. For the charts of the markets in

Figure 2 � and � are the mean values over the lifetime of the ETF. But in reality � and � are

not regarded as constant but reasonably can be seen to vary over time. So it seems likely that

the optimal value of k is time varying also. Can we predict � and � well enough to estimate

the optimal value of k for the immediate future?

We cannot easily predict � and it is outside the scope of this volatility paper anyway.

This is a dynamic asset allocation problem where we want to maximise some measure of

terminal wealth with decisions made at discrete time intervals such as days or months. This is

a dynamic stochastic programming problem (Samuelson 1969) but it is outside the scope of this

paper to provide an optimal solution. Instead we provide an indication of the possible gains

from solving the problem.

3.1 EGARCH(1, 1) Volatility Forecasting

�, the daily volatility, is a random variable which can vary from day to day. It is de�ned to

be the instantaneous standard deviation of price �uctuations. Measuring volatility is not as

straightforward as measuring price. It requires measuring price changes over time but during

the time interval measured the volatility itself may change. For example, if only daily closing

prices are observable then to get a reasonable measure of standard deviation 10 prices over 10

days need to be observed. But over those 10 days the volatility itself is sure to have changed.

So instantaneous volatility is unobservable. Instantaneous volatility can only be estimated in

the context of a model.

We shall use the EGARCH(1, 1) model for volatility forecasting because it is a relatively

standard choice and Poon and Granger (2003) report studies where it outperforms other meth-

ods, particularly when used on market indexes. It is outside the scope of this expository paper

to �nd the best method for our purposes so an indicative method will su¢ ce. The EGARCH(1,

1) model is

log(�2t ) = m(1� �� �) + � log(�2t�1) + �
���� "t�1�t�1

����+ 
 "t�1�t�1
(3)
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Figure 3: EGARCH Estimates of Daily Volatility

This models the log variance on day t, log(�2t ), as a weighted average of the long run log

variance m, the previous day�s log variance log(�2t�1), and the absolute value of the previous

day�s return "t�1 (scaled for consistency by the previous day�s volatility �t�1). The 
 term

is a correction1 term that allows for the fact that negative daily returns tend to add positive

amounts to the daily volatility. After estimating m, �, �;and 
 we can estimate volatility on

day t from quantities calculated on day t� 1.

Even though volatility is not a directly observable quantity this method gives us estimates

of volatility for days 1; : : : ; t. But, further, we can plug in values calculated on day t to forecast

the volatility for day t+ 1.

Figure 3 shows the EGARCH estimates for the S&P 500 daily volatility from 1950 to 2009.

The left hand charts show the volatility estimates, the right the estimates on a log scale. It is

apparent that logs of the volatilities have more symmetry than the raw volatilities; they also

are less �spiky.�This gives us justi�cation for the use of the log estimator in Equation (3) over

an estimator that estimates �2t directly.

3.2 Volatility of Volatility

A feature of the charts in Figure 3 is that the estimates of volatility vary over time. The most

likely reason is that the actual volatility being estimated varies over time. Let us de�ne the

volatility of volatility (vovo for short) as the standard deviation of the daily volatilities �t for

t = 1; : : : ; n where n represents the number of days of observation.

1The 
 term is frequently called the �leverage�term but we won�t use that volatility term here because it
could be confusing.
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Then for the purposes of the paper we shall estimate vovo by the intuitively reasonable

standard deviation of the EGARCH(1, 1) estimates of the daily volatility. It is beyond the

scope of this exploratory paper to examine the statistical properties of this estimator. For our

purposes it su¢ ces to know that volatility does vary and that our EGARCH model gives us

estimates of the variable volatility.

We don�t take the standard deviation of the daily volatilities, however. We deal with log

volatility where possible and calculate vovo on the log scale.

3.3 Costs of Volatility of Volatility

In traditional asset allocation vovo has a cost. As an example, consider a balanced-fund manager

who uses, say, bonds to reduce the volatility of a fund which contains equities. Or a �nancial

planner who assesses the risk tolerance of a client investor and proposes, say, a 60-40 equities-

bonds mix. The traditional way of managing these investments is to look at the long term

historical volatility of the component asset classes to decide the proportions to invest in. Usually

no consideration is given to the vovo of the asset classes and no constant volatility target is set.

So the investor or manager with a static or reasonably constant 60-40 mix has to su¤er the

varying volatility of the markets� sometimes sleeping well at night, occasionally not. In order

to ensure that the worst volatility is minimised the asset allocation will have erred on the side

of conservative. This will have cost returns.

The larger the vovo the more conservative the asset allocation will have to be and therefore

the more the cost to returns.

3.4 Volatility of Volatility Strategies

We now create three portfolio strategies that use volatility prediction and the �=�2 formula in

a short-term look-ahead manner. The strategies are:

� The Constant Volatility Strategy (CVS)

� The Optimal Volatility Strategy (OVS)

� Mean Only Strategy (MOS)

� The Optimal Volatility Plus Mean Strategy (OVPMS)
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The MOS is not a strategy that we consider for investment because it is included only as a

control for the the OVPMS strategy.

We also construct a data-snooping version of OVPMS called OVPMS+. The purpose of

this version is to give an indication of how well a calibrated version of OVPMS would have

done.

Every day just before the close of trading we take the closing price for the day and put it

into our EGARCH estimator to estimate our volatility for the next day. Call our estimate of

the ith day�s volatility si. Then we calculate our leverage ki for the ith day using our leverage

calculation formula. Then just on the closing bell we execute trades to bring our portfolio to

leverage ki so that it begins the next day at this level of leverage. The fact that the EGARCH

estimation and ensuing trading have to be done in the instant just before closing and that there

are transaction costs are implementation inconveniences that we overlook for the purposes of

this expository study. Also, in practice, we would likely be using intra-day prices for estimates

of the volatility rather than end of day prices since they can provide better predictions (Poon

and Granger 2003).

These strategies are not pattern-detection market timing strategies or technical analysis.

The strategies are not obtained by backtesting. They are purely mathematical day-ahead opti-

misation strategies that use past data only (OVPMS+ the exception) for volatility prediction.

3.5 Leveraged ETFs and the Probability of Ruin

The strategies can be implmented as overlays on existing portfolios or as investments in their

own right. They can be implemented by using combinations of leveraged ETFs provided that

suitable ETFs exist. For example suppose that leverage of 2.4 is required. This can be achieved

by investing 0.6 of the asset into a 2x leveraged ETF and 0.4 into a 3x leveraged ETF.

A typical range of leverages such as -3, -2, -1, 1, 2, and 3 may exist for any one index. That

gives a range of possibilities for mixing them. For example 2.4 = 0.6x2 + 0.3x3 but also 2.4 =

0.3x1 + 0.7x3 and also 2.4 = 0.15x(-1) + 0.85x3. More than two ETFs may be used. Which is

the best to choose? One possible answer considers the possibility of the ETF being ruined.

An ETF with leverage k will drop to zero if the market drops by 1=k. So in the 2.4 = 0.6x2

+ 0.3x3 case the strategy will be ruined if the index drops by 50% or more in one day. But the

12



2.4 = 0.15x(-1) + 0.85x3 case will still have 0.15x(0.5) left.

The probability of ruin when invested in an index is virtually zero. But a leveraged ETF

where the absolute value of the leverage exceeds one will always have a �nite chance of ruin.

The 1987 crash would have ruined any 5x leveraged ETF. Fortunately all the strategies reduce

leverage when volatility is high so this makes the chances of ruin smaller. We examine the

behaviour of the strategies at the 1987 crash below. Non-market catastrophic events that hit

the market without warning would be the most deadly risk.

4 Volatility of Volatility Strategies

Our three strategies di¤er in the formula used to derive the daily values of the ki.

4.1 The Constant Volatility Strategy (CVS)

This strategy sets the leverage to be ki = c=si for some constant c. This strategy is not optimal

in that it uses si in the denominator rather than s2i . But it has a simplicity and appeal that we

�nd irresistible. If tomorrow is predicted to be a high volatility day then it lowers the leverage

for that day in proportion to the predicted volatility. This means that it is aiming for a constant

volatility of c every day.

This has four useful implications for �nancial planning and risk management:

� it provides a target risk level that can be sold as a number (and put into the prospectus)

� it reduces the vovo experienced by the strategy.

� it increases the portfolio return by reducing the costs of vovo as described in subsection

3.3

� it generates alpha.

4.2 The Optimal Volatility Strategy (OVS)

This strategy sets the leverage to be ki = c=s2i for some constant c. The problem with this

strategy is that c cannot be easily set in advance to target a speci�c volatility as it can with

CVS. For a given prediction si and leverage c=s2i the predicted strategy volatility of the strategy
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for day i is c=si rather than the constant c for CVS. So OVS is not targeting constant volatility

but targeting extra low volatility the higher predicted volatility is.

OVS is not trying to reduce vovo so even though it is optimal it will lose some of its

desirableness in a management setting when the cost of vovo is taken into account. And a

further implementation problem arises in that in targeting a mean level of volatility the value

of c required is not known in advance. It can be calibrated by examining historical data but

this introduces estimation error and the assumption that the future will behave as the past.

A further problem with OVS that we will see below is that vovo introduces extra volatility

into the ki values which sometimes get very high. Higher ki values have higher probabilities of

portfolio ruin.

4.3 The Mean Only Strategy (MOS)

This strategy sets the leverage to be ki = cm(si) for some constant c and some function m(s)

which is described more fully in the next strategy. We are not interested in the MOS strategy

in its own right� just as a means of looking at the e¤ect of the � term contribution in the

expression �=�2. That is, this strategy acts as a control.

4.4 The Optimal Volatility Plus Mean Strategy (OVPMS, OVPMS+)

This strategy sets the leverage to be ki = cm(si)=s
2
i for some constant c and some function

m(s). Here we have some estimate of the mean return as a function of volatility only. Any

other prediction is outside the scope of this volatility paper.

The di¤erence between OVPMS and OVPMS+ is that the former only uses past data to

estimate the functionm(s) and every day when the EGARCH forecast is calculated the estimate

of m(s) is updated as well. OVPMS+ uses only one estimate of m(s) and that is calculated

from the entire date range. Therefore, for example, it uses in 1951 an estimate of m(s) that

was calculated from data up to 2009. The reason for doing this is to give us an idea of the

performance of this strategy from 2009 onwards by seeing how well the 2009 parameters did

when applied from 1950 onwards. This is a valid use of data-snooping in a calibration context

but the usual caveats of the future resembling the past apply.
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Figure 4: Actual Return versus Forecast Volatility
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Figure 5: Normalised Actual Returns versus Forecast Volatility

4.5 Estimating Return as a Function of Volatility

For OVPMS we require an estimate of market return as a function of volatility m(s). More

speci�cally, we want a prediction of market return as a function of our prediction of market

volatility.

The left hand chart of Figure 4 shows for the S&P 500 index from 1950 to 2009 a plot of the

market return versus our predicted EGARCH(1, 1) values for 14823 days. The daily returns

di are annualised by scaling to (1 + di)252 and the daily predicted volatility is annualised by

multiplying by
p
252. Some extreme points such as the 1987 crash of over 20% have been

omitted to improve readability.
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No obvious relationship between return and volatility can be seen. The correlation between

the two is 0.005557 (not signi�cantly di¤erent from zero, P = 0.50 signi�cance level). Let�s

make some changes to the �gure to get the right hand chart. Noticing that the spread of points

about the horizontal line is expanding as we move left to right we aim for a uniform spread

by normalising the daily returns by dividing them by the predicted volatility. This produces a

uniform spread which allows us to �t curves using unweighted least squares regression. Now we

zoom in on the chart into the rectangle shown in the chart. We get Figure 5. We have divided

the interval of forecast volatility from 0.05 to 0.25 (which is where 96% of the points lie) into

20 equally spaced bins and calculate the mean normalised return for each bin. These means

are plotted in cyan along with two standard deviation error bars. We see convincing evidence

that returns decrease with increasing volatility.

In an e¤ort to get an idea of the relationship between returns and volatility amongst what is

almost all noise we apply some smoothing techniques to all the points, not just the ones shown

in the �gure. The gold line is the overall mean. The black line is an application of Friedman

and Stuetzle�s (1982) supersmoother which uses local linear �ts. This smooths the data without

imposing any constraints onto it other than smoothness so is the most truthful smooth. But it

does not give us a clean functional form. So we try some parametric functions.

The green line is a quadratic �t. This imposes a turning point onto the relationship and

allows the scaled return to go below zero. The red line a robust �t of a power function f(s) =

asb. This imposes positivity onto the relationship and has no requirement for a turning point.

The parametric �ts are sensitive to the constraints we impose and we have no justi�cation for

imposing them.

But we have to start somewhere and the �nal portfolio may not be sensitive to the constraints

anyway. So we focus on the power function. This function seems to capture the relationship

quite well and it multiplies well with Formula 2 so we use this function for all further work.

Table 1 shows the estimates for b and the 95% con�dence intervals for these estimates.

The power function �t to the scaled returns is m=s = asb or m = asb+1 so our OVPMS

strategy becomes ki = cm(si)=s2i = cas
b�1
i and we drop the a by absorbing it into the constant

c. Thus

ki = cs
b�1
i
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Time Annual 95% Con�dence
Index Period Volatility b Interval for b
US Stocks 1885�2009 0.1672 -1.69 (-2.28, -1.09)
S&P 500 1950�2009 0.1531 -1.76 (-2.63, -0.90)
Dow Jones Industrial 30 1928�2009 0.1846 -1.52 (-2.27, -0.76)
NASDAQ 100 1971�2009 0.2020 -1.71 (-2.24, -1.19)
Russell 2000 1987�2009 0.2024 -1.82 (-2.60, -1.03)
Australian All Ords 1984�2009 0.1584 -1.87 (-2.79, -0.94)
Nikkei 225 1984�2009 0.2349 -2.49 (-4.05, -0.92)
FTSE 100 1984�2009 0.1833 -3.10 (-4.50, -1.71)
NZX All 1986�2009 0.1529 -3.18 (-4.43, -1.93)
NZX 10 1988�2009 0.1783 -2.80 (-4.93, -0.66)

Table 1: Indexes, Volatilities, and Power Function Exponents

where for OVPMS we update our estimate of b daily and for OVPMS+ we use a single estimate

for the whole period.

4.6 Another look at Return as a Function of Volatility

Return as a smooth function of volatility may not be the way the market works. It could

be that there is a threshold of volatility where the returns jump to zero or negative above

that threshold level. There is evidence that such a threshold exists for all the markets studied

and that it has a similar value in all cases. But estimating that value is a statistical exercise

(estimating peaks in noisy time-series signals) that is outside the scope of this paper.

4.7 Backtesting Strategies

Backtesting refers to the use of past data to:

� test a hypothesis

� estimate how a strategy worked in the past as a guide to how it will work in the future.

In this study we use backtesting for both purposes. Our main hypothesis that we are testing

is that returns can be increased and risk reduced by using our leverage formulae. This is a valid

and reasonably safe use of backtesting.

The problems come when you use the data to test hypotheses suggested by the data itself.

This dual use of the data produces biases which are explained below.
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The problems with the second use of backtesting are more straightforward. To use the past

as a guide to the future assumes that the future will behave as the past. There is a risk that

it does not. We cannot quantify this risk or correct for it and simply take it as given that any

predictions that our models make in this paper are subject to this risk.

For the purposes of this paper we classify the backtesting biases into three categories based

on how dangerous they are when used to predict the future:

� Data snooping bias �this occurs when we use data in the past that was obtained from

future data. This bias can be small when we use future data to calibrate a model and then

use calibrated parameters in the past. An example is when we test an asset allocation

strategy that requires a measure of the volatility of the market. We can estimate the

volatility from 50 years worth of data then go back in time and use the strategy as

though we knew that estimate right at the beginning. Provided that the estimate is

reasonably close to the actual future volatility this bias may be small. For example, our

estimate of the market volatility may turn out to be too high or too low with roughly

equal probability and this may make our estimate of future returns too high or too low

with equal probability. The equality of the probabilities means that the bias is low. And

in any case it does give us an idea of the potential returns of an accurately calibrated

model.

� Data mining bias � this occurs when we use data in the past that we obtained from

future data where we expect some regression to the mean in future excess returns. This

bias usually occurs when we optimise some parameter in our strategy. For example, we

might have a strategy based on a moving average of period �. We use an optimising

algorithm to �nd the value of � that gives the best excess returns. In that case we expect

considerable bias in backtesting because the true value of � in the future will be di¤erent

than our estimated value and our actual excess returns will be less than our estimated

value no matter whether our estimate was too high or too low. Our actual excess returns

will regress towards zero. Hopefully not all the way to zero� our optimal value of � will

hopefully be in the neighbourhood of the true value� and so data mining can be useful

even though biased.

Another situation that creates data mining bias is testing a hypothesis where the data

18



itself suggested the hypothesis. The correlation between the test and the suggestion

means that the signi�cance levels of the hypothesis test are really not as good as the test

statistics suggest. This bias arises frequently when the data is �mined�for ideas which

are then tested using the same data. We avoid this bias in this study by formulating our

equations and strategies before we look at the data and only use the data for calibration

not idea generation.

� Data torturing bias �this occurs when we �torture�the data into revealing information

it does not actually contain. In this case we expect excess returns to regress all the way

to zero. An example is when we notice that Friday the 13ths have a larger mean excess

return than any other day so our strategy is to only invest on Friday the 13. Since the

outperformance of that day is (presumably) just due to chance then the strategy will

produce zero excess returns in future.

The expression comes from the apothegm amongst statisticians that �if you torture a

dataset long enough it will confess to anything.�

5 Volatility of Volatility Strategies Performance

All the vovo strategies are evaluated in a return-risk framework. We use two di¤erent risk

formulations for this:

� The traditional risk �the standard deviation of daily returns (SDDR)

� The extreme risk �vovo-oriented risk �the standard deviation of daily returns plus two

times the vovo (SDDR+2)

The �rst risk measure is traditionally the one used in portfolio risk-adjusted measures of

performance such as the Sharpe Ratio (Sharpe 1966). But in the presence of vovo the standard

deviation of daily returns gives a conservative measure of risk in that it averages volatility over

the whole period. For example if volatility moves between 0.10 and 0.20 then SDDR will give

a value around 0.15. In contrast SDDR+2 will give a value closer to 0.20 thus re�ecting the

worst volatility during the investment period.

19



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

Annualised Actual Volatility

C
om

po
un

d 
A

nn
ua

l R
et

ur
n

S&P 500 1950 to 2009

Index
CVS
OVS
MOS
OVPMS
OVPMS+

0 0.05 0.1 0.15 0.2
0

0.05

0.1

Annualised Actual Volatility

C
om

po
un

d 
A

nn
ua

l R
et

ur
n

S&P 500 1950 to 2009

Index
CVS
OVS
MOS
OVPMS
OVPMS+

Figure 6: Return versus Volatility for the Strategies

We call the SDDR+2 value the extreme volatility value. It is roughly the volatility value

that is exceeded only 5% of the time2.

We tested all the strategies on the full list of indexes in Table 1 but for brevity we only

show here the results for the S&P 500 for 1950�2009. The patterns in the results are similar

and consistent across all markets and all indexes except for the magnitudes of the returns. In

particular the strategies show the same relative rankings.

5.1 Traditional Risk Performance

Figure 6 (right hand chart is a zoomed-in version) shows the returns of the strategies versus the

annualised daily standard deviation (SDDR) for the S&P 500 from 1950 to 2009. The curves

are traced out as a function of increasing volatility by increasing the constant scaling factor c

of Section 4. The vertical grey line is the mean volatility of the index over the time period. For

each strategy two versions are shown: the solid line is that strategy that invests in the risk free

return for the balance of any assets not invested in the market when the leverage is less than

one. The dotted line assumes that when leverage is less than one any uninvested funds return

zero. (Some dotted lines are hard to see but they all converge onto the same point at zero).

The actual value of the risk free rate of return (in this case 4%) can be seen as the intercept

of the solid curves when the leverage is zero. We have assumed for simplicity that the risk free

rate has been constant over the period. The e¤ect of this investment is to raise the returns a

2It deals with the volatility of volatility and should not be confused with the concept of value-at-risk which
deals with the volatility of returns
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little when leverage is low� the curve is twisted up near zero.

The black curve is a leveraged investment in the index itself as would be produced by a

leveraged ETF without fees. The black circles show integer values for the leverage. So the

black circle that intersects the grey vertical line is a 1x leveraged ETF. The next black circle is

2x etc. Up to 4x leverage is shown.

The e¤ect of volatility drag is evident on all the strategies including the leveraged ETFs.

All the curves have a peak and then drop down to (not shown on these charts) a return of -1.

The sharp dropo¤ down to -1 is a result of the 1987 crash where the S&P 500 had a return of

-20%. Any strategy having a leverage of 5 or more lost all their assets on that day. Due to the

one-o¤ nature of the crash and to the high volatility of the strategies on the right hand side of

the chart we shall con�ne our interest to the zoomed-in area of the chart near the vertical grey

line which is a realistic level of volatility for a fund manager to consider.

We choose the value of c that gives the strategy the same volatility as the index volatility.

We call this the 1x instance of the strategy. Here 1x refers to a multiple of the index volatility

rather than the index return3. The strategy returns can be read o¤ the chart and are given in

table 3. All the strategies beat the index but, more importantly, met our expectations. CVS

did well but not as well as OVS and this was expected because OVS used the exponent 2 in the

optimum Formula (2) whereas CVS only used an exponent 1. OVPMS did better than OVS

because it used the � term in the formula whereas OVS set � = 1. And OVPMS+ did better

than OVPMS because it used data-snooping to optimise the formula m(si) used to estimate �

as a function of �. OVPMS+ gives us an idea of how well OVPMS will perform in the future

with a calibrated m(si) function. It only provides a small improvement over OVPMS which

suggests that the daily dynamic updating of the m(si) worked quite well as an adaptive method

of estimating the optimal formula.

MOS uses just the � part of Formula (2) and did less well than any of the strategies that

used �. This indicates that our excess returns over the index did not come just from the fact

that returns are high when volatility is low. Further returns came from the denominator of the

formula. For all our strategies and for all the markets studied the correlation between daily

returns and leverages is about 0.005 to 0.02. This is very small� too small to be noticed if

3For a leveraged ETF the designations 1x, 2x, . . . with equal validity could refer to a multiple of the return
or the volatility
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Figure 7: Daily Leverages used for the 1x versions of the Strategies

plotted on a chart and it is not statistically di¤erent from zero (P = 0.50 to 0.10 typically).

But it is large enough to create a signi�cant timing boost to returns.

We have charts for all the other markets and for brevity they are omitted here. The results

are summarised in Table 2 and are consistent over all the markets and time periods studied.

Some special bear, sideways, and bull market time periods are considered below.

Figure 7 shows for the strategies CVS 1x, OVS 1x, MOS 1x, and OVPMS+ 1x the daily

leverages used. We see that only CVS keeps maximum leverage down below 3 most of the

time. The other strategies concern us a little because we start getting nervous when volatility

exceeds that level because of the encroaching risk of ruin. The OVPMS+ strategy actually

gets leverage as high as 12.5 which must surely qualify as dangerous because an 8% drop in

the market would ruin the investment. The grey vertical line shows the 1987 crash and we

can easily see that the strategies anticipated the event by reducing leverage. This is discussed

further below.

Figure 8 shows, on a log scale, the equity curve for the strategies and the equity curves for

the S&P 500 at 1x, 2x, 3x, 4x. The strategies do not do as well at times as the 3x and 4x
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Figure 8: Equity Curves for Leveraged ETFs and the Strategies

Annual CVS OVS MOS OVPMS OVPMS+
Index Return Return Return Return Return Return
US Stocks 0.0393 0.0647 0.0837 0.0572 0.0953 0.0917
S&P 500 0.0699 0.1012 0.1209 0.0950 0.1260 0.1292
Dow Jones Industrial 30 0.0446 0.0855 0.1046 0.0678 0.0904 0.1071
NASDAQ 100 0.0769 0.1883 0.2540 0.1708 0.2606 0.2681
Russell 2000 0.0640 0.1393 0.1920 0.1296 0.1857 0.2062
Australian All Ords 0.0650 0.1095 0.1371 0.1050 0.1413 0.1516
Nikkei 225 -0.0000 0.0317 0.0920 0.0605 0.1228 0.1552
FTSE 100 0.0370 0.0578 0.0710 0.0720 0.0767 0.0747
NZX All 0.0441 0.1020 0.1565 0.1650 0.1952 0.2060
NZX 10 0.0504 0.0744 0.1030 0.0973 0.1116 0.1394

Table 2: Indexes and Returns for 1x Instances of the Strategies

leveraged ETFs but they all have volatility 1x whereas the ETFs have volatility 3x and 4x.

The ETFs also su¤er severely at the 1987 crash.

Table 2 shows the performance of the strategies for the same range of markets and time

frames as Table 1. As a rough rule of thumb the CVS strategy seems to return about twice as

much as the market and OVPMS+ three times. All the strategies are the instances which

produce the same volatility as the market (1x instances). This table provides compelling

evidence that the strategies have worked very well in the past. Whether they will continue

to do so in the future is an open question.
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Figure 9: Extreme Volatility Chart for the Strategies

5.2 Extreme Volatility Risk Performance

Figure 9 shows the returns of the strategies versus the extreme volatility (SDDR+2). This

produces dramatic changes in the rankings of the strategies.

CVS with its almost constant volatility and smaller vovo produces returns as good as OVS

and both strategies beat the strategies that use the m(si). It seems that any method that

incorporates m(si) gets an extra boost in vovo which reduces its e¤ectiveness in this risk

framework.

How good is the constant volatility of CVS? Since many managers estimate volatility using

historical volatility and since investor perception of volatility comes from experience of recent

volatility let us estimate the volatility of CVS using 63-day (corresponding to a three monthly

reporting period) historical volatility. This is plotted in Figure 10 with the S&P 500 index

63-day volatility in the background. A SDDR+2 horizontal line is drawn for each series. Both

series have the same mean level of volatility (shown as a grey horizontal line) but CVS is less

extreme both upwards and downwards. CVS is still not as smooth as we might like and this is

an area for further research and optimisation.
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Figure 10: Historical Volatility for the Index and CVS

5.3 Alpha Beta charts

Now we get to a paradox about leverage and beta. Traditionally they are thought of as measures

of the same thing. But here we �nd it is not so.

Figure 11 shows plots of the strategy daily returns versus the S&P 500 index daily returns

for the instances of the strategies that have the same volatility as the S&P 500 index (the 1x

versions, OVPMS 1x omitted to save space since it is similar to OVPMS+ 1x). Alpha and

Beta are the intercept and slope of the regression lines� the least squares �t to the equation

StrategyReturn = � + �IndexReturn. � measures the amount the strategy returns for each

unit of return in the index. It is thus a measure of leverage. Table 3 shows that all the strategies

have a � less than one. On average, the strategies move less than the index moves.

The table also shows the mean daily leverage that the strategies applied to the S&P 500

index over the duration of the study. The �gure shows the mean leverages as a blue line. All

the strategies have a mean leverage greater than one. This explains why the strategies beat

the index� the index has a long term trend that is upwards and the strategies have a leveraged

exposure to this trend. The vovo strategies in a sense apportion out this leverage so that the

overall volatility is not increased yet the overall leverage is increased.

So why is � telling us the exposure to the index decreased overall? The reason for the

paradox is that in the regression of daily returns the points with the most leverage have the
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Figure 11: Strategy Returns versus Index Returns

lowest volatility and so tend to be near the origin of the charts and have less in�uence on the

regression line4.

5.4 Sideways and Bear Market Performance

The Nikkei 225 index from 1984 to 2009 is an interesting case of a sideways market. This index

was 10149.00 on 14 June 1984 and 10135.82 on 12 June 2009. So the annualised rate of return
4Statisticians would say that those points have less �leverage�on the regression line but we won�t use that

statistical term here because it could be confusing.

Annualised Annualised Mean Daily
Strategy Volatility Return SDDR+2 Leverage Alpha Beta
S&P 500 0.153 0.070 0.283 1.000 0.000000 1.000
CVS 1x 0.153 0.101 0.191 1.303 0.000147 0.896
OVS 1x 0.153 0.121 0.222 1.380 0.000270 0.731
MOS 1x 0.153 0.095 0.205 1.257 0.000113 0.932
OVPMS 1x 0.153 0.126 0.291 1.310 0.000330 0.594
OVPMS+ 1x 0.153 0.129 0.264 1.352 0.000336 0.612

Table 3: Statistics of the Strategies
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Figure 12: Strategy Performance for a Bear Market

was -0.0053% over this period which is practically zero. This lets us see how the strategies

performed in a market that would not bene�t from leverage under a buy-and-hold strategy.

The strategies that use mean prediction (Table 2 OVPMS and OVPMS+) did very well in

this market. It appears that using volatility to predict returns is an e¤ective strategy for the

Nikkei 225� we got 12.5% or 16% annual returns out of a market that went nowhere.

The next index we look at (Figure 12) is the S&P 500 from 24 March 2000 to 9 March 2009

when the index went from 1527.46 to 676.53� a sustained bear market where the annualised

return was -8.72%. All the strategies beat or equalled the index but they still lost money over

the period. So it appears that in a bear market when leverage is expected to amplify losses the

vovo strategies do no worse than the index. But they do not turn a bear market into a bull.

5.5 Bull Market Performance

9 Dec 1994 to 24 March 2000 was a bull market where the S&P 500 index went from 446.96 to

1527.46� an annualised rate of 26.11%. Figure 13 shows that the vovo strategies outperformed

the index but not by much. The reason is possibly because this was a period of low volatility

and low vovo. The vovo strategies did not have much vovo to work on.

5.6 1987 Crash Protection

We are interested in two aspects of the 1987 crash � did the strategies protect the portfolio

from the downside of the crash and did the crash come close to ruining the strategies?

Table 4 shows the leverage that the strategies determined the day before the crash should
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Figure 13: Strategy Performance for a Bull Market

Strategy Leverage Leverage
19 October 1987 20 October 1987

CVS 0.455 0.160
OVS 0.152 0.019
MOS 0.568 0.256
OVPMS 0.034 0.002
OVPMS+ 0.058 0.003

Table 4: Special Leverage Values of the Strategies

be used for the day of the crash.

It can be seen that the strategies greatly reduced their leverage for the day after the crash

so to a certain extent they reacted as panicked investors and missed some of the next day�s

bounce. But the important point here is that all the strategies saw the crash coming and had a

greatly reduced exposure to it thereby gaining overall (relative to the market) from the crash.

Any conclusions we make here constitute data torturing because the crash was a one-time-only

event and is (hopefully) unlikely to ever be repeated due to measures put into place since then

(such as closing the markets when they move too far).

5.7 The Long-Only Maximum Leverage 1 Portfolio

Our vovo strategies had no limit to the amount of leverage applied but we need to look at how

well they perform when they are restricted to a maximum leverage of one. Figure 14 shows the

results for the Dow Jones Industrial Average for 1984 to 2009. Setting the maximum leverage

to one means that the volatility of the strategy cannot exceed the volatility of the index. So

we only show the region of the chart to the left of the index volatility.

The most interesting result is that our returns are reduced to about the index return. This
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Figure 14: Return versus Volatility when Maximum Leverage is One

is perhaps to be expected since our excess returns come from having mean leverage greater

than one in favourable markets so the maximum leverage of one will reduce the mean leverage

to below one. But this is not a law, however. By reducing leverage when the index is doing

poorly means that the mean return can exceed the return of the index. For some indexes such

as the NASDAQ 100 (omitted for brevity) the returns do exceed the index returns. But not by

much. A limit to the actual and mean leverage does impact strategy returns.

The chart shows that we can approximately halve the annualised volatility down to about

0.1 while slightly increasing returns. So the e¤ect of the strategies on the traditional portfolio

is likely to be a reduction in volatility rather than an increase in returns.

6 Conclusion and Directions for Further Research

Returns are not easily predictable but volatility is. By allowing for leveraged investing we have

introduced a formula for compound returns that depends on volatility thereby introducing

an element of predictability into returns. We have identi�ed three sources of alpha from the

volatility predictability:

� The extra overall leverage allowed by the apportionment of leverage without increasing

overall portfolio volatility
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� The relationship between returns and volatility and the use of extra leverage when returns

are higher

� The deleveraging prior to the 1987 crash

We have introduced three simple intuitive investment strategies that use these sources to

generate alpha in the various markets that we have tested it in.

The three strategies are: the Constant Volatility Strategy (CVS) which aims to achieve

a constant daily volatility by predicting the volatility and setting a leverage value to aim at

the target; the Optimal Volatility Strategy (OVS) which sets the daily leverage to be inversely

proportional to the predicted volatility squared; and the Optimal Volatility Plus Mean Strategy

(OVPMS) which estimates the expected return as a power function of volatility and sets the

daily leverage to be the expected return divided by the predicted volatility squared.

All three strategies manage to get the upsides of leverage without the downsides� they

generate excess returns in bull and sideways markets and do no worse than the market in bear

markets. If they are restricted to leverage no more than one then they manage to greatly

reduce the volatility of a portfolio without signi�cantly reducing returns. And all three strate-

gies reduce the volatility of volatility of the portfolio which allows the portfolio manager to

deliberately seek more volatility than normal.

The order of performance of the strategies in increasing order when measured using risk-

adjusted returns is CVS, OVS, OVPMS. But of the three strategies the one that we prefer is

the worst performing one CVS. We prefer this because:

� It allows us to seek a speci�ed constant target volatility that can be put into a prospectus

and in practice the realised volatility is much less variable than the market and other

strategies

� It usually has leverage less than 3 so has the least maximum risk of all the strategies (and

the least probability of ruin) and can be implemented using existing 3x leveraged ETFs

� It has the best return pro�le when measured against the maximum lifetime volatility of

the portfolio (as measured by mean volatility plus two times the standard deviation of

volatility)

The following subsections discuss a few directions for further research.
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6.1 Multiple Assets Model

We only considered the volatility of stock market indexes in any detail which is a univariate

situation. When we consider multiple assets we get not only volatilities but correlations between

returns. Then Formula (2) becomes k = ��1� where � is a variance-covariance matrix and k

and � are vectors. We might consider a multivariate EGARCH model for estimating �.

6.2 Interaction of Volatility Changes and Return

We have ignored the relationship between volatility changes and return. We have only estimated

return in as much as it relates to absolute levels of volatility rather than to changes in volatility.

But there is evidence that returns and volatility changes are highly negatively correlated and in

more complicated ways than given by 
 in Equation (3). For example Bouchaud, Matacz, and

Potters (2001) �nd in their �Retarded Volatility Model�that the correlation e¤ect for individual

stocks is moderate and decays over 50 days, while for stock indices it is much stronger but decays

faster.
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